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Viscous gravity currents resulting from the introduction of fluid between an upper 
layer of fluid of lesser density and a lower layer of greater density are analysed. The 
nonlinear equations governing the spread and shape of the intrusion are formulated 
for the cases of intrusion a t  low Reynolds number between deep ambient layers and 
of flow over a shallow layer of viscous fluid with a rigid lower boundary. Similarity 
solutions of these equations are obtained in both two-dimensional and axisymmetric 
geometries, under the assumption that the volume of intruding fluid increases with 
time like tu. The theoretical predictions are shown to be in reasonable agreement with 
experimental observations of the spreading of glucose syrups and of viscous 
hydrocarbons between fluid layers of differing densities. Scaling arguments are used 
to derive many new results for the rates of spread of intrusions in a wide variety of 
further situations. A compendium of spreading relations, including some previously 
isolated results, is derived within a coherent framework and tabulated. 

1. Introduction 
When fluid is introduced a t  the interface between two fluids, one of greater and one 

of lesser density, then a gravity current results : the injected fluid intrudes along the 
interface, driven by buoyancy forces. A gravity current will also result from the 
introduction of fluid a t  the lower boundary of a less dense fluid or a t  the upper 
boundary of a more dense fluid ; here the intrusion occurs between the boundary and 
the ambient fluid. Such flows are ubiquitous both in nature and in industry. Most 
researchers have concentrated on large-Reynolds-number gravity currents such as 
those occurring in the atmosphere, oceans and lakes. Examples of such flows, in 
which there is a balance between inertial and buoyancy forces, may be found in a 
review by Simpson (1982). In  this paper we consider low-Reynolds-number gravity 
currents, in which the flow is retarded by viscous rather than inertial forces. This 
regime has received much less attention, despite its relevance to geological 
applications (Kerr & Lister 1987; Huppert et al. 1982) and elsewhere. 

I n  this paper we derive, in both axisymmetric and two-dimensional geometries, 
new solutions for the shape and rate of spread of viscous gravity currents in two 
situations. In $2 we first present equations for intrusion at the interface between two 
deep layers of viscous fluid, and for spread over a shallow layer of viscous fluid lying 
above a rigid boundary. 

t Present address : Research School of Earth Sciences, The Australian National University, 
GPO Box 4, Canberra, ACT 2601, Australia. 
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In each case, inertial and surface-tension forces are assumed to be negligible 
everywhere, as are the effects of diffusion and mixing at the fluid interfaces. 
Similarity forms of solution are given for conditions in which the total volume of 
intruding fluid is proportional to ta, where a is a non-negative constant. Thus, we 
include the important and interesting cases of constant volume release (a  = 0) and 
constant flux input (a  = 1). 

The flow in the intruding fluid is analysed using the approximations of 
lubrication theory. In the deep-layer problem, the flow in the ambient fluid is given 
in terms of t h e  boundsry-integral representation of Stokes flow ; the derivation of an 
appropriate numerical method of solution is given in Appendix C. In Appendix A 
$A.l the neglect of the inertial forces is shown to be valid if a < a (two-dimensional) 
or a: < 2 (axisymmetric), and t + t,, where t ,  is the transition time at which inertial 
and viscous forces balance. The analysis of the shallow-layer flow is made under the 
assumption that the surface gravity current occupies a negligible fraction of the layer 
depth. The assumption is justified a t  large times if a < $ (two-dimensional) or 
a < 1 (axisymmetric) ; if a exceeds these values then the depth of the current increases 
until it touches the rigid bottom and the analysis of Huppert (1982) becomes 
applicable; the solution when a: equals these values is derived in Appendix B. 

In  93 we describe a series of measurements of the spread of high-viscosity glucose 
syrups. The experimental configurations include two-dimensional and axisymmet ric 
geometries, fixed flux and fixed volume releases, and shallow and deep ambient 
fluids. The measurements are shown to be in reasonable agreement with the 
appropriate analytic solution. A discussion of the results is given in $4. 

In Appendix A we use scaling arguments to highlight the important physical 
balances underlying the detailed analysis and to rederive the spreading laws of $2 to 
within a multiplicative constant. As we have mentioned, the scaling arguments are 
then used to determine the values of a and t for which the analytic theory is valid. 
Though the scaling arguments do not provide as much detailed information as the 
analytic solutions to the equations of motion, they may be used to indicate when 
effects other than buoyancy and viscosity may be neglected, and also to determine 
the rate of spread when such effects are important. We discuss the cases of surface 
tension and of diffusion. The flexibility of the approach allows us to cover previous 
studies of flow over a rigid surface (Huppert 1982; Didden & Maxworthy 1982; 
Maxworthy 1983), viscous flow along the free surface of a relatively inviscid fluid 
(Fay 1969 ; Hoult 1972) and intrusion into stongly stratified environments 
(Maxworthy 1972; Chen 1980), as well as to derive many fresh results. These results 
are tabulated for reference. 

2. Analytic solutions 
In this section we derive analytic solutions for the spread of a viscous gravity 

current in two particular geometries. First, we consider the intrusion of fluid with an 
intermediate density along the interface between two deep fluid layers in Stokes flow, 
far from rigid boundaries. Secondly, wc discuss the spread of light fluid over a 
shallow fluid layer with a rigid horizontal bottom. In  the following paragraphs we 
present the analysis that  is common to these situations, before deriving the solutions 
in turn. 

Consider a current of density po intruding between a fluid layer of lesser density p+, 
initially occupying the region z > 0, and another layer of greater density p-, initially 
occupying the region x < 0 (see figure la ,  b) .  For the moment, we shall confine 
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FIGURE 1.  Definition sketches for the spread of an intrusion : (a) between two deep layers of 
viscous fluid; ( b )  over a shallow layer of depth d .  

V 

attention to intrusion in an axisymmetric geometry. Let the viscosities of the fluids 
be vo, v+ and v- respectively, and let the intrusion occupy h-(r, t )  < z < h+(r, t )  for 
0 < r < r N ( t ) .  The intrusion is assumed to be of a much greater horizontal extent 
than vertical depth (i.e. rN B h + ) ;  this will be the case a t  sufficiently large times 
(see (A 10) in Appendix A). It isalso assumed that the depth of the ambient fluid 
is much greater than the depth of the intrusion (see, (A 11)). 

The density differences between the fluids may be represented by a hydrostatic 
pressure 

PH = PO-P+ 9'- (PO-P+)  9 ( h+ - a h )  (h+ < z), (2.1 a )  
P- - P+ 

P H  = PO -PO gz+PO g f h  (h- < z < h+), (2 . lb)  

where 

(2.1 c)  

The flow driven by the gradients of this hydrostatic pressure may be considered in 
two parts. Any horizontal gradients of p ,  in the ambient fluid act to establish a local 
hydrostatic equilibrium in which the intrusion 'floats ' between the two ambient 
fluids and h+ and h- are in the ratio p- -po : p o  - p +  ; the horizontal gradients of p ,  
within the intrusion cause it to spread. Since the depth of the ambient fluid is much 
greater than h, the local hydrostatic equilibrium is achieved on a much shorter 
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timescale than the subscquent lateral spread of the intrusion. This equilibrium is not 
disturbed by the viscous stresses caused by the spread. 

Since h < rN, the velocity in the intrusion is nearly horizontal and we may use the 
approximations of lubrication theory. (The breakdown of these approximations in 
the immediate neighbourhood of the nose of the current only affects the flow within 
an O(h) distance of t,he nose. It does not, therefore, influence the global dynamics of 
the current, which determine the spreading rate, cf. discussion in Huppert 1982). 
Therefore, if surface tension and inertial forces within the intruding fluid are 
negligiblc, the velocity in the current uo is given by 

with solution 

(2.2) 

(2.3) 

The vertical extent of the flow in the ambient fluid will be O(rN) for the unbounded 
Stokes flow and d for flow over a shallow layer. Hence, the vertical scale of velocity 
variations will be much greater than the depth of the intrusion. Therefore, when 
solving for the velocities in the ambient fluid, we may replace the boundary 
conditions a t  z = h,  by conditions at z = 0. Provided that u, is not much less than 
v, or v-, we may also neglect the variation in velocity across the intrusion in the 
equation of mass continuity for the intruding fluid and in the equation of continuity 
of velocity a t  z = h,. - Thus, in the region 0 < r < rN 

ah 1 a 
-+--(rhU) = 0 
at r a r  

The velocity of the intrusion causes bulk motion of the ambicnt layers. It is the 
solution for the motion in the ambient fluid t h a t  the analyses of thc Stokes flow and 
shallow-layer intrusions diverge. 

2.1. Xtokes flow in a deep layer 

Consider intrusion into a large volume of viscous fluid whose boundaries are at a 
much greater distance than the extent of the intrusion. The flow in the ambient fluid 
may then be treated as being unbounded. 

We assume that the Reynolds number of this motion is sufficiently small that at 
any instant the ambient fluid is in Stokes flow given by the viscous stresses exerted 
at the interfaces between the intruding and ambient fluids. We use the general 
identity for Stokes flow (Ladyzhenskaya 1963) : 

where r = x - y ,  1 denotes the unit tensor and u is a Stokes flow with stress tensor a 
in domain V with boundary aV and outward normal n. When this is applied to each 
of the flows u+ and u_ a t  a point x on z = 0 the first integral vanishes because 
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rsn = 0 and the left-hand sides are equal to $CJ(x) by (2.5). We substitute for r~ from 
(2.3), multiply by the viscosity and add the results to deduce that 

where y = (r‘cose, r’sin8,O) and e, is a unit vector in the radial direction. 
Substitution of (2.7) into (2.4) yields the following nonlinear partial differential 

where the dimensionless kernel X is defined by 

We solve (2.8) subject to  the global continuity condition 

2x I’ hr dr = Qt”. (2.10) 

While solutions to (2.8) and (2.10) may be obtained numerically from given initial 
conditions, it is better to observe that the problem has a similarity solution and that 
any solution with sufficiently smooth initial conditions will tend to this similarity 
form. We define 

= y ~ l  (_)t(%) ,&2a+1)/5, (2.11a) 
2g‘p0 Q -% 

P t  +P- 

where yN = (/:Hydy)’, H(1) = O. 

Substitution into (2.8) yields the following equation for H : 

a-2 
-H-- 

5 5 

(2.11 b )  

(2.12) 

which in general can only be solved numerically. A numerical scheme for the solution 
of (2.12) is described in Appendix C. Solutions for H at various values of a and the 
dependence of the constant rqN on a are shown in figure 2. 

I n  the important special case of a fixed volume release (a = 0) we can integrate 
(2.12) and apply the boundary condition a t  y = 1 to deduce that 

-& = 1; HH’X dy’ (a = 0). (2.13) 

Equation (2.13) shows that HH is the stress distribution induced on a rigid disk by 
an axisymmetric straining motion with radial rate of strain f .  This is a degenerate 
case of general linear motion past an ellipsoid given by Jeffery (1922) and Hinch 
(1972). Their analyses show that 

(2.14) 

0 FLM 203 
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FIGURE 2 .  An axisymmetric gravity current, of volume Qt", spreading between two deep layers of 
viscous fluid. (a) The shape of the current: ( b )  the  dimensionless length q N  of the current as a 
function of a. 
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Hence (2.15) 

The predicted spreading law for an axisymmetric drop of constant volume is thus 
given by 

125 poQ2g‘ 
rN = (SX) t5. 

(2 .16)  

Note that the scaling arguments given in Appendix A can predict this answer to 
within the numerical constant and the dependence on the viscosity ratio p+/pu-. 

The analysis of a two-dimensional current, spreading symmetrically in -xN < 
x < xN follows a similar line of reasoning to the above. Therefore, we only sketch below 
the derivation of the two-dimensional result analogous to (2 .16) .  The equation of 
mass continuity of intruding fluid is 

ah a 
- + - ( h U )  = 0, 
at ax 

with a global volume constraint IN hdx = Qt”. 

(2 .17)  

(2.18) 

Though the Green function for two-dimensional Stokes flow is logarithmically 
unbounded a t  infinity, the equivalent identity to (2 .6 )  is nevertheless well-defined for 
the flow under consideration here, owing to the symmetry a(x) = -a( -x) of the 
stress generating it. We find that 

(2.19) 

(2 .20)  
1 
4n 

where .X(x’;z) = --ln1x-z’l. 

The appropriate similarity variables are 

where 

Then 

tN = (1: H ( t )  dt)-’, H ( 1 )  = 0. 

1 

Ht = $i.I, HH’X(r; 6) d r ) .  
a-1 2a+l 
-H-- 

3 3 

(2 .21a)  

(2.21 b )  

(2.22) 

Numerical solutions of this equation are shown in figure 3. 
Again, in the important case of fixed volume release (01 = 0) we can integrate once 

and use an analogy with straining motion past a degenerate ellipsoid to solve for H .  
This time we find that 

(2 .23)  
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FIGURE 3. A two-dimensional gravity current, of volume &la, spreading between two deep layers 
of viscous fluid. ( a )  The shape of the current; ( b )  the dimensionless length 6, of the current as a 
function of a. 
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The spreading law for a two-dimensional drop of constant volume is therefore given 

(2.24) 

2.2 Flow over a shallow layer 
Suppose now that the layer of ambient fluid in z < 0 is supported by a rigid 
horizontal boundary a t  z = -d (figure 1 b) .  We assume that h < d < rN, as will be the 
case at sufficiently large times if a < 1 (see Appendix A SA.1). The velocity profile 
within the intrusion is given by (2.3). The vertical scale of motion in the upper fluid 
will be much greater than d provided that t % d2/v , .  We may thus neglect the stress 
exerted by the intrusion on the upper fluid in comparison with the stress, 

(2.25) 

exerted on the lower, shallow layer. Since d < r ,  the motion in the lower layer caused 
by this stress will be horizontal except in small regions of size O ( d )  near r = 0 and 
r = r N .  

Initially, the outward motion of the intrusion causes an outward motion of the 
lower layer of fluid and a slight decrease in the thickness of the layer. However, the 
fall in the level of lower fluid soon causes a reverse pressure gradient within that layer 
due to the density difference p--p+. A quasi-steady equilibrium is set up in which 
the reverse pressure gradient is precisely that required to ensure that there is no net 
flux of lower fluid through any radial cross-section. This argument is equivalent to 
the requirement of local hydrostatic equilibrium was discussed earlier. Therefore, the 
timescale for the establishment of this equilibrium which is much less than that for 
spread of the intrusion since h < d and g’ < g(p+-p-)/p,. The velocity profile u- in 
the lower layer is driven by the surface stress v and the reverse pressure gradient. 
Hence i t  satisfies 

(2.26a, b )  
a2u- - a% 

a 2 2  a Z  
- - constant, p-- = u ( z  = 0), 

r d u - d z  = 0, u-(-d) = 0. 

The solution to 12.261 is 

(2.26c, d )  

(2.27) 

Substituting from (2.27) and (2.25) into the continuity conditions (2.4) and (2.25) 
we obtain the following differential equation for h(r, t )  : 

(2.28) 

(For the geophysical application described in Kerr & Lister 1987 i t  is necessary to 
replace the rigid boundary condition (2.26d) by the free-slip condition &/az = 0. 
This simply changes the factor 4 in (2.28) to 3.) 
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The appropriate similarity solution to (2 .28)  subject, to the usual volume 
constraint (2.10) is given by 

where 

and 

a-1 2 a t l  1 
-H-- 7H' = - (rH2H')' ,  

3 6 7 
(2.29) 

(2.30 a )  

(2.30 b) 

( 2 . 3 0 ~ )  

Using the boundary condition H(1) = 0, we find that around 7 = 1 the solution to 
(2.29) must satisfy 

(2.31) 

This asymptotic result may he used as a starting condition for inwards numerical 
integration of (2.29). Some solutions of (2.29) are shown in figurc 4(a)  together with 
the approximations given by (2.31). The approximate solutions agree quite well with 
the true solutions except near 7 = 0, where the true solutions have a singularity 
( a  + 0) due to  the continual introduction of fluid. A graph of rN, as a function of a is 
given in figure 4 ( b ) .  It should be recalled that the modelling equations will only be 
valid a t  large times if a < 1 ; if a > 1 the depth of intruding fluid increases with time 
and h < d ceases to  hold. 

When a = 0, (2.29) and ( 2 . 3 0 ~ )  have t3he exact solutions 

(2.32a, b )  

These results not only describe the interesting case of fixed volume release, but also 
provide a useful check on the accuracy of any numerical scheme for general solution 
of (2.29). 

A two-dimensional current, spreading symmetrically in - x N  < R: < xN over a 
shallow layer of depth d,  may be analysed in a very similar way. The arguments 
leading to  the expression (2 .27 )  for the velocity in the lower layer carry through to 
the two-dimensional geometry. Local and global conservation of intruding fluid lead 
to 

(2.33a, 6 )  

(2.34 a)  

(2.34 6 )  

( 2 . 3 4 ~ )  
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FIGURE 4. An axisymmetric gravity current, of volume Qt", spreading over a shallow layer of 
viscous fluid. (a) The shape of the current; true solutions are shown solid; the asymptotic 
approximations (2.31) are shown dashed; ( b )  the dimensionless length qN of the current as a 
function of a. 
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FIGURE 5 .  A two-dimensional gravity current, of volume Qt", spreading over a shallow layer of 
viscous fluid. ( a )  The shape of the current; true solutions are shown solid; the asymptotic 
approximation (2.35) is shown dashed for a = 0 and is indistinguishable from the true solution for 
a = 1 ,2 ;  ( b )  the dimensionless length 6, of the current as a function of a. 
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gives rise to 

with local solution 

2a- 1 
4 

H -  
2a+ 1 

4 
-~ [ H  = ( H 2 H ) ’  

1 3 - 2 a  
H -  [2(2a+1)(1-()]3 1--- “ 121+2a 

(2.35) 

(2.36) 

Numerical and asymptotic solutions for H are shown in figure 5(a) ;  the dependence 
of the constant tN on a is shown in figure 5(b). 

Once again, we can obtain an exact solution for fixed volume release (a  = 0) : 

A further analytic solution may be obtained for the case a = I: 
g a  

H = (2(1-[))4, EN = (3. 

(2.37a, b )  

(2.38a, b )  

3. Experiments 
In  the previous section explicit formulae were derived for the spread of a viscous 

intrusion into deep fluid and over a shallow layer of fluid. We now describe 
experiments conducted to verify these formulae. 

The ambient fluid in the majority of our experiments was a glucose syrup 
(manufactured under the trademark ‘Globe ’). At room temperature this syrup has 
a specific gravity of about 1.43 and a kinematic viscosity in the range 400-750 cm2 
s-’. The intruding fluids in these experiments were solutions of 25-30 wt. YO glycerol 
(S.G. 1.26) and about 1 wt. % water in another glucose syrup of greater mean 
molecular weight and hence much greater viscosity ( v  M lo5 om2 s-l). It was 
therefore possible to prepare an intruding fluid of given viscosity and density by 
varying the ratios syrup to glycerol and syrup to water independently. A few 
preliminary experiments, to be described briefly later, used other combinations of 
fluids: one used solutions of 1,1,2-trichloro-1,2,2-trifluoroethane (S.G. 1.58) in 
polybutenes (S.G about 0.88, manufactured under the trademark ‘Hyvis ’) of 
appropriate molecular masses and viscosities ; the remainder used solutions consisting 
of about 80 wt. ‘YO glycerol (S.G. 1.26) and about 20 wt. ‘YO aqueous potassium 
carbonate solution (S.G. 1 .00-1.54, depending on concentration). I n  each of these 
systems the ambient and intruding fluids were miscible and the intruding fluid was 
dyed to aid visualization. 

The viscosities of binary glycerol-water mixtures were calculated from measure- 
ments of refractive index using tables in Miner & Dalton (1953). The viscosities 
of all the other fluids were measured over a range of temperatures using a U-tube 
viscometer and densities were measured using a hydrometer. All of these 
measurements were accurate to within 1 %, though, in practice, variations in 
temperature across the experimental tank and during the course of the experiments 
increased the uncertainty in the viscosity to typically 5%. Measurements of the 
extent of the current were made both by eye and from video recordings using either 
a rule laid across the tank or millimetre-ruled graph paper placed under the tank. 
Parallax errors were calibrated and eliminated to within 1 ‘YO. 

Five geometries and the corresponding spreading laws were investigated in a series 
of experiments using glucose syrups. In each case the gravity current, consisted of a 
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light intruding syrup spreading over the free surface of a denser ambient syrup. As 
a precaution, prior t o  each experiment the free surface of the ambicnt. syrup was 
scraped to remove any air-borne dust that  had settled, and the apparatus was then 
covered for the duration of the experiment. The necessity for this precaution is 
discussed later. The apparatus and method of rclcase in each geometry are detailed 
below and summarized in table l(a).  The other experimental paramet,ers are 
summarized in table 1 ( b ) .  

( i )  Experiments 1-3. Three experiments were conducted to investigate fixed 
volume, axisymmetric spread over a shallow layer. In  each experiment the shallow 
layer was contained in a circular flat,-bottomed Perspex tank of internal diameter 
90 cm that, had previously been levelled to within 0.3 mm. The layer depths away 
from the sidewall meniscus were in the range 5-8.5 cm. Buoyant fluid was initially 
confined a t  the centre of the tank within a Perspex cylinder ; the internal diameters 
of the cylinders used were 13.5, 24 and 14.5 cm respectively. A t  the start, of each 
experiment the cylinder was raised, producing an axisymmetric gravity current. The 
volumes of buoyant fluid used in the calculation of results take account of the 
amount of fluid adhering to  the barrier on release. 

(i i)  Experiments 4 4 .  Three further experiments were conducted in the circular 
tank described above. In these experiments buoyant fluid was continually released 
at the centre of the tank from a pipe draining a reservoir of the fluid. A nearly 
constant flux was achieved by maintaining the head of the reservoir to within 3 %. 
The orifice of the pipe was clamped about 1 cm above the fluid level in the tank and 
the inertia of the fluid issuing from the pipe was  negligible. 

(iii) Experiment 7.  Our final investigation of flow over a shallow layer considered 
two-dimensional fixed volume release. A flat-bottomed Perspex tray, 50 cm square, 
was filled to a depth of nearly 5 cm with the ambient fluid. The buoyant fluid was 
released from behind a straight barrier, parallel to, and several centimetres from, the 
endwall of the tray. A nearly two-dimensional current was produced with the effects 
of the finite span of the current apparently restricted to a retardation within 5 cm of 
the sidewalls; variations across the central 40 cm of the current were negligible. 

(iv) Experiments X and 9. These experiments investigated the axisymmetric 
spread of a fixed flux of buoyant fluid over a large volume of ambient fluid conta.ined 
within a circular Perspex tank, 73 cm in internal diameter and filled to a nominal 
depth of 35 cm. The point of release of the buoyant fluid, at the centre of the tank, 
was thus about 35 cm from any of the tank’s boundaries. As in Experiments 4-6, a 
nearly constant flux release was effected using a pipe and reservoir though in this 
case it was only possible to maintain the head to within 6%. 

(v) Experiments 10-12. These three experiments are representative of a number of 
experiments, not reported here in detail, which involved axisymmetric spread of a 
fixed volume of fluid over a large volume of denser fluid. In  Experiments 10 and 12 
the buoyant fluid was released from within Perspex cylinders, of internal diameters 
5 cm and 10 cm respectively, into ambient fluid of approximate depth 20 ern 
contained in a cylindrical vessel of internal diameter 40 cm. Experiment 1 1  was 
conducted in the 73 cm internal diameter tank described above. The intruding fluid 
was added through a wide funnel during the first 30 s of the experiment, the circular 
nozzle of the funnel ensuring that the initial conditions were axisymmetric. 

(vi) Experiw$ent 13. The results of the three experiments just described should be 
compared with the results from an early trial experimental using polybutenes, which 
considered the spread of an axisymmetric current between two deep layers of fluid. 
The intruding fluid was injected from a calibrated syringe, through a n  attached 



E
x

p
t 

1 2 3
 

4 5 6 7 8 9 10
 

11
 

12
 

13
 

P-
 

1.
42

9 
1.

42
9 

1.
42

9 

1.
42

9 
1.

42
9 

1.
42

9 

1.
42

8 

1.
42

85
 

1.
42

85
 

1.
42

9 
1.

42
85

 
1.

42
9 

0.
89

5 

(g
 

(a
) 

E
x

p
ts

 
A

m
bi

en
t 

fl
ui

d 
G

eo
m

et
ry

 
B

uo
ya

nt
 f

lu
id

 

1-
3 

S
ha

ll
ow

 
A

xi
sy

m
m

et
ri

c 
F

ix
ed

 v
ol

um
e 

4-
6 

S
ha

ll
ow

 
A

xi
sy

m
m

et
ri

c 
F

ix
ed

 f
lu

x 
7 

S
ha

ll
ow

 
T

w
o-

di
m

en
si

on
al

 
F

ix
ed

 v
ol

um
e 

8-
9 

D
ee

p 
A

xi
sy

m
m

et
ri

c 
F

ix
ed

 f
lu

x 
1&

13
 

D
ee

p 
A

xi
sy

m
m

et
ri

c 
F

ix
ed

 v
ol

um
e 

Po
 

1.
39

4 
1.

39
4 

1.
39

9 

1.
39

55
 

1.
39

7 
1.

39
9 

1.
39

35
 

1.
39

1 
1.

39
35

 

1.
40

3 
1.

39
1 

1.
40

3 
0.

88
7 

(g
 e

m
-"

) 

-
 

0.
88

05
 

!3' 
(c

m
 s

-
~

)
 

24
 

24
 

21
 

23
 

22
 

24
 

24
 

26
 

24
 

18
 

26
 

18
 

4.
0 

(b
) 

(c
m

a s
-l

) 

72
0 

72
0 

69
0 

70
0 

73
0 

62
5 

45
0 

65
0 

46
0 

88
0 

61
0 

72
0 62

 

V-
 

VO
 

(e
rn

a s
-l

) 

67
0 

67
0 

74
0 

76
0 

62
0 

62
0 

33
0 

59
0 

33
0 

11
00

 
55

0 
80

0 
58

 

v+
 

(e
m

a s
-l

) 

~ 55
 

Q 
10

23
 em

3 
8.

1 
93

3 
em

3 
7.

2 
25

2 
cm

3 
5.

15
 

0.
24

3 
em

3 
s-

l 
7.

7 
0.

27
8 

cm
3 

s-
l 

0.
01

26
 c

m
3 

s-
l 

4.
6 

15
.4

 c
m

2 
4.

75
 

0.
24

4 
cm

3 
s-

l 
0.

40
1 

om
3 

s-
' 

-
 

24
2 

em
3 

-
 

47
8 

em
3 

-
 

5.
0 

em
3 

__
 

?
 8 GT
 

f 
6

.6
 

a
 &
 

-
 

<
 

R 2
 g 

-
 

m
 

33
.7

 c
m

3 
m 

T
A

B
L

E
 1.
 (

a
) T

h
e 

ex
pe

ri
m

en
ta

l 
ge

om
et

ri
es

 ;
 (b

) t
h

e 
ex

pe
ri

m
en

ta
l 

pa
ra

m
et

er
s 



230 J .  R. Lister and R. C. Kerr 

nozzle, a t  the interface of a two-layer stratified system. The layers were contained in 
a cylindrical glass vessel of internal diameter 17 cm and had depths of nominally 
8 cm. The vessel was placed on a millimetre ruled sheet of paper and was covered by 
a Perspex sheet on which was marked an identical millimetre grid. Corresponding 
marks on the sheet of paper and on thc cover were lined up to avoid parallax errors 
in the measurement of the radius of the spreading intrusion. Though this was a small- 
scale experiment, it is of some interest because it involved spread a t  an internal 
density interface and not a t  an air-fluid free surface. 

The results of these thirteen experiments are shown in figure 6(u-e) together with 
the theoretical predictions derived in $2,  

and 

rN = 0.836 (P 2--- ;ddy t c  (Expts 1-3), 

r, = 0.653 @ ' t i  (Expts 4-6), ( P- ) 
xN = 1.128 y?'"")i ~ tq ' (Expt 7) ,  

7, = 0.689 fl "d (Expts 10-13). L + P I  

( 3 . 1 ~ )  

(3.1 b)  

( 3 . 1 ~ )  

(3.1 d )  

(3.1 e )  

In  each case the extent of the current is drawn scaled by the appropriate 
(dimensional) coefficient o f t  from (3.1) in order to  allow data from each group of 
experiments to collapse onto a single curve. 

The asymptotic agreement between theory and experiment as t + 00 in each of the 
four geometries represented by (3.1 u 4 )  is good. In three of these geometries several 
experiments with differing parameters were conducted and the theoretical scaling of 
the results is confirmed by a successful collapse of the data. It should be noted that 
the theoretical solution describes the large-time experimental behaviour ; a t  early 
times the experimental intrusions did not satisfy the geometrical constraints, such as 
H 4 L,  required for the theoretical solutions to be valid. This point also explains the 
closer agreement a t  early times of the fixed flux releases (Expts 4-6, 8, 9) compared 
with the fixed volume releases (Expts 1-3, 7 ) .  In the latter experiments, in order to 
have sufficient depths of buoyant fluid a t  large times for the intrusion to be 
observable, the depth of buoyant fluid a t  early times had to be a significant fraction 
of the total depth of the fluid layer, whereas in the constant-flux experiments the 
intrusion thickness is nearly constant in time (equations (2.30b) and (2.1 1 b ) )  and was 
observed to be in the range 3-8 mm, much less than the layer depth. 

An indication of the shapes of the intrusions at early times may be found in figures 
7 and 8 which show side views of Experiments 1 and 4. Each photograph is such that, 
a t  the distance from the camera of the intrusion, the depth of the fluid layer fills thc 
frame, with the upper edge of the frame coinciding with the free surface and the lower 
edge with the base of the tank. The angle a t  which the nose of the intrusion appears 
to meet the free surface may be influenced by optical effects at the air-fluid interface. 
I n  connection with our earlier remarks, we note that the fixed-volume intrusion 
shown in figure 7 was initially flat-bottomed and occupied some 80% of the fluid 
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FIGURE 6. (a) Experimental values of r* = r(27pOQ2g‘d/8rr2p~)-~ as a function of time for the 
axisymmetric spreading of a constant volume of syrup over a shallow ambient layer. (+ , Expt 1 ; 
*, Expt 2; x , Expt 3 .  theoretical solution shown as solid line.) ( b )  Experimental values of r* = 
(r /0.653) (po Q*g’d/p-)-r as a function of time for the axisymrnetric spreading of a constant flux of 
syrup over a shallow ambient layer. (+ , Expt 4; *, Expt 5;  x , qxpt 6;  theoretical solution shown 
as solid line.) ( c )  Experimental values of x* = x( 16p, Q2g‘d/lr2p-)-i as a function of time for the two- 
dimensional spreading of a constant volume of syrup over a shallow ambient layer. ( +, Exp: 7 ; 
theoretical solution shown as solid line.) ( d )  Experimental values of r* = (r/0.309) (p, Q2g’/p_)-g as 
a function of time for the axisymmetric spreading of a constant flux of syrup over a deep ambient 
layer. (+ , Expt 8; *, Expt 9; thForetica1 solution shown as solid line.) ( e )  Experimental values of 
r* = r (  125p0 Q2g’/256n(p-+p+))p as a function of time for the axisymmetric spreading of a 
constant volume of syrup or of polybutene between deep ambient layers. (+ , Expt 10; *, Expt 11 ; 
x , Expt 12; 0,  Expt 13; theoretical solution shown as solid line.) 

1 

depth. The spread of the intrusion was retarded for some time by the resistance to 
ambient fluid flowing to fill the relatively thin gap under the buoyant fluid as the gap 
widened. In  contrast, the fixed-flux intrusion shown in figure 8 was much thinner 
and, even near the central bulge under the point of supply, occupied a small fraction 
of the layer depth. 

After the good asymptotic agreement between theory and experiment in the four 
geometries investigated in Experiments 1-9, the poor agreement in the remaining 
geometry - fixed volume, axisymmetric spread over deep fluid - is puzzling. I n  
Experiments i s 1 2  the dependence on t appears to  be more rapid than t i ;  in 
Experiment 13 the dependence on t is close to t i  but with a smaller coefficient than 
expected. Among the experiments conducted in this geometry using syrups as the 
experimental fluids, there is some evidence of an improvement in the results with an 
increase in Q .  These points are discussed more fully in the following section. 

To close this section, i t  is worthwhile to note the necessity of maintaining a dust- 
free surface on the ambient fluid. I n  a series of preliminary experiments using 
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FIGURE 7 .  Side views of the spread of an axisymmetric gravity current containing a fixed volume 
of buoyant, dyed syrup (Experiment 1, parameters given in table 16).  The first frame was taken 
before the release of the buoyant fluid from within a cylindrical Perspex barrier of internal 
diameter 14.5 cm. The depth of the fluid layer was 8.1 cm and fills each frame at the distance of 
the current. It should be noted tha t  the shape of the buoyant fluid remains flat-bottomed for some 
time, owing t o  the large resistance t o  the inward flow of denser fluid beneath the spreading current. 
(The horizontal line near the bottom of each frame is the back edge of the tank ; optical effects may 
influence the apparent angle at which the nose of the intrusion meets the free surface.) 

uncovered glycerol solutions we observed that the leading edge of the current showed 
radial striations, visible some distance towards the sourcc of the intrusion. An 
example of these striations is reproduced in figure 9. Increasing contamination of 
the fluids by atmospheric dust was reflected by an increasing intensity of the striated 
pattern and greater departures from (3.1) towards the slower spread associated with 
flow over a rigid surface. The striations are very similar to those reported as 
occurring in other ‘free-surface’ flows (Rritter & Simpson 1978; Huppert B Simpson 
1980; Didden & Maxworthy 1982) and are attributable to surface contamination of 
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FIQURE 8. Side views of the axisymmetric spread of a gravity current fed by a fixed flux of 
buoyant fluid at  its centre (Experiment 4, parameters given in table 1 h ) .  The total fluid depth was 
7.7 cm and, even near the centre of the current, the thickness of the spreading current was much 
less than this. The average thickness of the current was about 5.5 mm, except just aRer the start 
of the experiment. 

the glycerol which causes the air-glycerol interface to act as a rigid rather than as a 
free surface. Ambient fluid, a t  rest next to the rigid surface by virtue of the ‘no-slip’ 
condition, is consequently under-run by the spreading intrusion. This overlay of a 
less dense fluid by a more dense fluid causes gravitational instability and the striated 
pattern. In Experiments 1-12, the scraping of the surface of the ambient fluid, 
described earlier, successfully removed contaminants from the fluid surface and no 
evidence of striations or of rigidity in the free surface was observed. 
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FIGURE 9. In  a series of preliminary experiments involving glycerol solutions, the leading edge of 
the intrusion developed a radially striated pattern. This pattern is caused by contamination of the 
fluid surface by dust. The example shown occurs on the edge of an axisymmetric current containing 
19.0 crn3 of glycerol solution, dyed blue, density 1.227 g and viscosity 1.10  cm2 s-l. which is 
spreading over a 2.6 em deep layer of another glycerol solution, density 1.349 g cn1r3 and viscosity 
1.15 crn2 SKI. The photograph was taken approximately 100 min after release and the scale is in cm. 
The fuzzy appearance of the edge of the current is due to the striations. 

4. Discussion 
The spread of axisymmetric and two-dimensional intrusions along a fluid interface 

has been investigatcd theoretically and experimentally. In  two cases, intrusion 
between deep layers of viscous fluid and flow over a shallow layer, complete analytic 
solutions of the equations of motion have been found in similarity form. These 
solutions give both the shape of the intrusion cnd the scaling and numerical 
coefficient in the spreading law. The scaling of the results and the time-dependence 
of the flows are also derived independently in an Appendix using the simple but 
powerful technique of scaling analysis. 

The analytic results can bc compared with the results of our experiments. For the 
experimental parameters used, the neglect of inertial forces (as assumed in the 
theory) was justified after at most a few seconds. Diffusion was also negligible on the 
timescale of our experiments. Five different spreading laws have been investigated. 
In four cases the experirncntal results and theoretical predictions are in good 
agreement, both with regard to the time-dependence of the extent of'the current and 
with the scaling on the physical parameters of the current. The numerical coefficients 
are also in agreement to within experimental accuracy. Predictions in which r cc t i ,  
r E t i ,  r cc ti, and roc ti have each been verified in the appropriate geometry. The 
results from axisymmetric spread of a fixed volume over deep fluid are disappointing 
and merit discussion. 

The first point to make is that ,  as derived in Appendix A, the t i  time-dependence 
and the scaling on the physical parameters ( Q ,  g' and p-) of the theoretical predication 



Viscous gravity currents at a j h i d  interface 237 

are given by simple scaling estimates, (A 3) and (A 4), of the buoyancy force and 
viscous resistance. The same estimates are used successfully in the Appendix to 
predict the rate of spread in the four other geometries. Further, we note that the 
same analysis that gave the numerical coefficient in (3 . l e )  from solution of (2.12), 
also led to  the theoretical prediction (3 . ld)  for fixed flux release which does agree 
with experiment. A n  algebraic error in the theory seems unlikely, therefore, and we 
conclude that the experiments were affected by a physical process other than the 
simple balance of viscous and buoyancy forces modelled. The presence of the walls 
of the experimental tank would reduce the flow in the ambient fluid and slow the 
spread of the current and, hence, cannot explain the results of Experiments 10-12 
in which the spread was faster than expected. The finite size of the apparatus is, 
however, the most likely explanation for the slower spread in Experiment 13. As 
noted earlier, inertial effects were completely negligible owing to the large viscosities 
of the fluids (see (A 9) in Appendix A). 

Two possible candidates for an effect that could increase the rate of spread of a 
gravity current are thermal convection in the ambient fluid and gradients of surface 
tension in the free surface. Since the spreading currents were observed to remain very 
nearly circular, an explanation in terms of thermal convection would require toroidal 
convection in the ambient fluid driven by sidewall cooling. However, background 
convection currents observed by means of floating tracer particles were neither 
axisymmetric nor large enough to explain the experimental discrepancies. A more 
likely mechanism is augmentation of the buoyancy forces by gradients in the 
air-fluid surface tension caused by the differing compositions of the syrups. The 
phenomenon is the same as observed when the surface of a pool of water is ‘pulled 
apart’ when a drop of detergent is placed on it. This hypothesis explains why 
Experiment 13 gave dissimilar results to Experiments 10-12, since the former 
intrusion took place between miscible fluids and not at an air-fluid interface. As the 
ratio of buoyancy forces to interfacial forces increases with volume, this hypothesis 
also gives some explanation for the improvement in the results with the volume of 
buoyant fluid and for the good results in other geometries, in which larger volumes 
of fluid were, in general, used. However, it is surprising that the other geometries 
show no evidence of spreading driven by surface tension. 

Returning to the theoretical models, in Appendix A SA.1 it is shown that if a is less 
than a critical value a1 then an intrusion between deep layers will initially propagate 
under an inertial-buoyancy balance, but will ultimately propagate under a 
viscous-buoyancy balance. Here al = t for a two-dimensional current and a1 = $ for 
an axisymmetric current. Our analysis will be valid for times much greater than the 
transition time between the regimes, a time which is estimated in Appendix A 5 A. 1 .  
If, however, a > a1 then an initial viscous-buoyancy balance will give way to a 
regime in which inertia is important and our analysis breaks down. In  this inertial 
regime the Stokes flow in the ambient fluid is replaced by a viscous boundary layer. 
Arguments are given in the Appendix showing that this leads to spreading laws of the 
form r a t(40r+3)/8 (two-dimensional) and r a t(4a+3)/12 (axisymmetric), valid a t  large 
times provided a > a,. 

Our analysis of flow over a shallow layer was made under the assumption that the 
thickness of the intrusion was much less than that of the layer. This will ultimately 
be the case if a < a,, where a, = a for a two-dimensional current and a, = 1 for an 
axisymmetric current. If a > a, then the intrusion thickens with time and violates 
the assumption. 

If the fluids are miscible then diffusion will eventually become important when the 
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diffusive boundary layer becomes much thicker than the intrusion. Spreading 
relations for diffusion-dominated intrusions are given in Appendix A sA.2. 

Finally, we note that the analytic solutions presented in $ 2  describe the spreading 
regimes that were relevant to the geophysical application analysed in Kerr & Lister 
(1987). Many of the other spreading regimes identified in Appendix A have not yet 
received a theoretical treatment and might give rise to analytic solutions. 
Experiments should be performed to verify the consequent theoretical predictions. 

J .  R. Lister and R. C. Kerr 
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Appendix A. Scaling analysis 
The rate of spread of a viscous intrusion can be found by equating estimates of the 

buoyancy forces driving the motion and of the viscous drag exerted by the ambient 
fluid on the int>ruding fluid. As indicated below, this approach is similar to that used 
in some particular geometries by a number of authors. The scaling analysis presented 
here highlights the physical balances underlying viscous gravity currents and 
provides an understanding of a wide variety of intrusive situations. We consider both 
two-dimensional and axisymmetric currents occurring along an interface, or at a free 
surface, or along a horizontal rigid boundary. 

Let the typical vertical and horizontal extent of the 
respectively, and suppose the total volume of intruding 
are positive constants. For brevity, we shall treat 
axisymmetric cases together. Thus 

HLnil - Qt", 

current bc H and L (9  H )  
fluid is Qt", where a and Q 
the two-dimensional and 

where n = 0 for a two-dimensional current and n = 1 for an axisymmetric current. 
Let D be the vertical scale of motion in the ambient fluid and U be a typical 
horizontal velocity within the intrusion. Then 

L 
U - -  

t '  
the total buoyancy force is given by 

and the viscous drag exerted by t'he ambient fluid on the intrusion is given by 

A. 1. The eSfects of geometry 

We neglect the effects of diffusion and surface tension. Once D is specified, then, by 
equating the right-hand sides of (A 3) and (A 4), we can determine the spreading law 
for the intrusion. We consider below four cases of currents spreading under a balance 
between viscous and buoyancy forces. 
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I 

FrauRE 10. The spread of a viscous intrusion : (a )  between deep layers of fluid in Stokes flow (region 
of influence shown dashed) ; (b )  over a layer of shallow depth d ;  ( e )  resisted by a viscous boundary 
layer; and ( d )  over a rigid surface. 

(a )  Suppose the intrusion takes place far from rigid boundaries into a large volume 
of viscous fluid (figure 1Oa). Assume also that the intrusion is sufficiently sluggish 
that inertia may be neglected. The ambient fluid will thus be in Stokes flow driven 
by the buoyancy of the intrusion. This flow will be equidimensional and so D - L .  
Hence 

(b )  Alternatively, suppose the intrusion consists of a current along the surface of 
a shallow layer of viscous fluid (figure 106). Suppose too that the layer has a constant 
depth d and that H + d + L. Then D - d and 

( c )  The third case we consider is that in which the intrusion takes place into a 
relatively inviscid environment. The adjustment between slug flow in the viscous 
intruding fluid and zero velocity at distance into the ambient fluid is made in a thin 
boundary layer of thickness D - (vt); (figure 1Oc). Thus 

The spreading laws (A 7) have been given previously only in the particular cases of 
a = 0 (Fay 1969; Hoult 1972) and a = 1 (Didden & Maxworthy 1982). 
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( d )  Finally, when a viscous gravity current flows over a rigid surface (figure 10d) 
the shear is concentrated within the current itself. (We assume tha t  H is much less 
than the vertical scale of the motion in the ambient fluid.) We must therefore replace 
D by H in (A 4) when calculating the viscous retarding force. When this is done we 
obtain 

where v is now the viscosity of the intruding fluid (Huppert 1982; Maxworthy 1983). 
Comparison between (A ti), (A 6) ,  ( A  7) and (A 8) shows clearly the importance of 

geometry in determining the rate of spread of a gravity current. The rate depcnds 
critically upon the vertical scale D of the viscous drag inhibiting spread. In  more 
complicated geometries the drag may be concentrated in either the fluid above or 
below the intrusion and the situation can be reduced to  one of the four simple cases 
above. For example, in an  intrusion bctween a shallow layer of viscous fluid with a 
rigid boundary and a deep layer of viscous fluid, the drag exerted by the shallow 
layer dominates that  exerted by Stokes flow in the deep layer. Therefore, provided 
tha t  the intrusion is much thinner than the depth of the shallow layer, i t  will spread 
according to  (A 6) and not (A 5).  Further extensions of these ideas to  include the 
effects of surface tension, diffusion and a stratified environment are described later 
in this Appendix. 

We conclude this section with a discussion of the conditions necessary for the 
validity of (A 5)-(A 7) .  Similar constraints will apply to  (A 8) but  are described by 
Huppert (1982) and will be omitted here. 

The models giving rise to  (A 5) and (A 7 )  are in many senses complementary. If the 
ambient fluid is very viscous then it will be driven in Stokes flow and (A 5) will be 
valid ; if it is relatively inviscid then it will contain a thin inertial boundary layer and 
(A 7) will hold. The distinction between the two regimes lies in the relative sizes of 
L and (vt);. It is reassuringly consistent tha t  inserting the condition L - (vt)i into 
either (A 5 )  or (A 7) leads to  the same result: the Stokes flow analysis will hold if 

2n+ 1 

or (. = F), J 
and the boundary-layer analysis will hold if the converse conditions are satisfied. The 
same conclusions may, of course, be obtained by a comparison of the magnitudes of 
the inertial and viscous forces. Our final requirement, t,hat H 4 L ,  may be shown to 
reduce to  

(Stokes flow), (A 10a) 

t 9 (+) (boundary layer flow). ( A  106) 
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I n  the derivation of (A 6) to  describe flow over a shallow layer we assumed that 
H < d and that d < L.  From (A 6) and (A 1 )  we may deduce that the first of these 
conditions requires 

or (. = F). J 
The constraint will be satisfied a t  sufficiently large times if a < 4 (two-dimensional) 
or a < 1 (axisymmetric). If 01 exceeds these values then the depth of intruding fluid 
will increase with time until i t  touches the rigid boundary at the base of the shallow 
layer ; the analysis leading to (A 8) will then be appropriate. If a equals these values 
then the scalings (A 6) and (A 8) are equivalent. A detailed mathematical description 
for this case is given in Appendix B. 

The restriction that d < L is easily seen from (A 6) to be satisfied a t  large times. 
At very short times, when L < d,  the layer of ambient fluid appears deep and (A 5) 
or (A 7)  may be applicable. The final condition for the validity of (A 6) is the neglect 
of inertial effects. This may be evaluated by a comparison of the magnitude of 
inertial and viscous forces. More simply, we note that inertial effects will be negligible 
if the timescale of the motion is much greater than the viscous diffusion timescale 
based on the layer depth, i.e. 

t B - .  (A 12) 
a2 

v 

A.2. Difjimion 
Consider an intrusion spreading in accordance with one of equations (A 5)-(A 8). 
Suppose, for definiteness, that the upper fluid is immiscible with the other two and 
that the density difference between the lower fluid and the intruding fluid is due to 
a diffusive property (heat or composition) with diffusivity K .  The effects of diffusion 
will be negligible provided that the intrusion is much thicker than the diffusive 
boundary layer; that  is H % (Kt);. The time at which H - (Kt); may readily be 
estimated from (A 1) and (A 5)-(A 8). Thereafter, diffusion of density differences is 
as important as advection and the vertical extent of the intrusion is given by 

H N (Kt);. (A 13) 
The thickening of the intrusion by diffusion causes the volume of fluid in the 
intrusion to be greater than Qt". Therefore, (A 1)  must be replaced by the statement 
that  total buoyancy is conserved. Thus, the effective value of g' is reduced from its 
initial non-diffusive value gh owing to the dilution of the stratifying species. Hcnce 

Qt" d f f  = Ln+l(K,);d. 

Equating the buoyancy and viscous forces given by (A 3) and (A 4) yields 
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The spreading law for the diffusive intrusion can then be obtained loy substitution 
of the appropriate estimate of D, and of the values of gLrf and H from (A 13) and 
(A 14), into (A 15). The results are summarized in table 2. We note that Q and gh only 
occur as their product since it is the buoyancy flux, rather than the initial volume of 
the intruding fluid, that determines thc rate of spread in the diffusive regime. 

In each case, there are conditions for the validity of these spreading laws. 
For a diffusion-dominated intrusion of verticd extent given by (A 13)  we require 
Qt"/L"" 6 (Kt);. The conditions for the separation of scales ( H  $ L (all cases), 
H < d $ L,  ( v t ) ;  (shallow layer), L < (vt); (Stokes flow) and L + ( v f ) ;  (boundary 
layer)) are analogous to those applicable to non-diffusive intrusions. Each of these 
conditions may easily be rearranged using the expressions in table 2 to give the range 
of 1 for which the spreading law is appropriate. Since thc viscous diffusion scale (v t ) :  
must in each rase be greater than the buoyancy diffusion scale ( ~ t ) : ,  the Prandtl 
number must satisfy Pr + 1. 

A.3. Swfuce tension 
Suppose now that the fluids in the upper and lower layers and the intrusion are all 
immiscible. Let u++, crtO and u - ~  be the coefficients of interfacial tension between the 
fluids and let cr = r++ - u + ~  - U-,,. Then the total force due to surface tension is given 

Fs - uL". ( A  16) 

If < 0 then we look for a quasi-steady equilibrium in which there is a surface 
tension-buoyancy balance. From (A 3) and (A 16) we recover the result that such a 
balance requires spreading a t  a constant thickness given by 

.-(g 
and derive the corresponding spreading rate 

( A  17a) 

(A 176) 

Hence, by comparing (A 17) with (A 5)-(A 8), we sec that  if a is less than a critical 
value then there is a transition time, with corresponding lengthscale, a t  which a 
viscous-buoyancy balance is succeeded by a surface tension-buoyancy balance. 

Conversely, if u > 0 then we look for a balance between a driving surface-tension 
force and a retarding viscous drag. From (A 4) and (A 16), 

D ~ u  N ,u,LL. (A 1s) 

The spreading relations, resulting from substitution of the relevant estimates of D. 
are summarized in table 2. These relations will be appropriate when the buoyancy 
force is negligible compared with the force due to surface tension. Results in this 
viscous-surface tension regime have important applications to the spread of a crude 
oil slick on watcr (Hoult 1972). 

A.4 .  LStrong stratijicatiow 
As our final illustration of the diversity of situations that can be treated by simple 
scaling analyses, we consider intrusion a t  the neutral buoyancy level into a 
continuously stratified environment with buoyancy frequency N .  If the strati firation 
is strong (more precisely Gr = P L 4 / v 2  + 1) then the vertical scale D of the motion 
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will be equal to the vertical scale H of the force exerted by the intrusion. To make 
the analogy between the discontinuously stratified problem and the continuously 
stratified problem, wc replace g' by P H  in (A 3).  A viscous-buoyancy balance of 
forces is then possible if 

(A 19) ( y ) l f ( 4 n + " '  t(4a+1)/(4n+6) 

(Chen 1980). For the subcase a = l , n  = 0 this result was given previously by 
Maxworthy (1972). 

Appendix B. Shallow-layer intrusions of constant thickness 
For an intrusion of volume Qt" spreading over a shallow layer of fluid, we showed 

earlier that there is a critical value of a given by a2 = l / (n+ l), where n = 0 for a 
two-dimensional current and n = 1 for an axisymmetric current. If a < az then a t  
large times the ambient layer is much thicker than the intrusion and the solution 
given in $ 2 . 2  is applicable; if a > a2 then at large times the intrusion is much thicker 
than the ambient layer and the solution given by Huppert (1982) is applicable. In 
this Appendix we derive the solution for the transition case a = a2. 

Let thc geometry be as shown in figure 1 (b )  except in that x = 0 is now defined to 
coincide with the rigid lower boundary and d is now a function of t  and the horizontal 
coordinate x. Let d +dm as zt-i+ CO, An appropriate hydrostatic pressure is given by 

a Z u -  g" a 
a22  vo ax m- = --(h+rd) (d  > z > O ) ,  

where m = p-/p0,  T = (p--p+)/(p, , -p+) and g" = g(po-p+)/po. Equations (B 2) are 
solved subject to the conditions of no-slip at z = 0, zero stress a t  z = h+d and 
continuity of velocity and stress at z = d.  (The stress exerted by the overlying fluid 
may be neg1ect)ed as in $ 2 . 2 . )  It is natural to definc similarity variables by 

In  terms of these variables, the local and global conservation equations may be 
shown to reduce to 

3mg26n+1H'+{tnH[2H(3D+mH) (H'+D')+3D2(rD'+H')]}' = 0 (6  < l ) ,  (B 4a) 

3mg2e+1D'+{6nD2[2D(rD'+H')+3H(H'+D')]}' = 0 (t < i) ,  (B 46) 

(B 4 C) ~ v z Q ~ ~ ~ + ~ D I  + 2r{ tnD3D')' = 0 (6 > 1 ), 
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FIQURE 11. A two-dimensional gravity current, of volume proportional to ti ,  spreading over a 
shallow layer of viscous fluid; m = 1 (equal viscosities) and T = 2 (equal density differences). For 
small values of the dimensionless volume flux q the current approximates spread over a shallow 
layer of constant depth ; for large values of q the current approximates spread over a rigid surface. 
(a)  q2 = 0.001, ( b )  0.01, ( c )  0.1, ( d )  1.0, ( e )  10, (f) 100. 

where the dimensionless volume flux q is defined by 

The boundary conditions for (B 4) are less obvious than those for a very shallow 
intrusion. It is clear that  both D and the flux of lower fluid must be continuous a t  
5 = 1 and that D -+ 1 as C+ 00. Since the total volume of lower fluid is constant there 
must be zero flux of lower fluid a t  5 = 0. The condition that H(1) = 0 then closes the 
problem. Given the values of D and D' at 5 = l,, it is possible to integrate 
numerically from 6 = 1 in either direction. A shooting method can be used to find the 
values that enable the conditions at the origin and infinity to  be satisfied. 

As would be expected, i t  may be shown analytically that in the limit q + O  the 
solution approaches that of (2.29) and (2.35) and that in the limit q+ 00 the solution 
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FIG~-RE 12. The dimensionless length 5, = x,d,/(&t~) of a two-dimensional gravity current 
spreading over a shallow layer of viscous fluid; r = co. The dashed asymptotes are calculated from 
(2.35) and correspond to the assumption that t h e  thickness of the current can be neglected ; the 
dotted asymptote is calculated from Huppert (1982, equation (2.13)) and corresponds to the 
assumption that the thickness of the ambient layer can be neglected. 

approaches that of Huppert (1982, equations (2.13) and (2.25)). Some numerical 
solutions showing the variation in shape of a two-dimensional intrusion with q are 
shown in figure 11. It may be noted that a t  any fixed position in (real) space the 
intrusion is thickening. This causes an outward flux of the lower fluid and an 
elevation of the interface in 6 > 1. It is also worth commenting that if q exceeds a 
critical value (which depends on m and r )  then the depth of the lower layer increases 
linearly from zero in the neighbourhood of 6 = 0. The variation of gN with q is shown 
in figure 12. The asymptotic behaviour for small and large q may again be seen. 

Appendix C. Numerical solution of Stokes flow integral equations 
In $2.1 we showed that the equations of motion for the intrusion of one viscous 

fluid into an unbounded volume of another could be expressed in self-similar form. 
Wc noted that, except in the special case a = 0, the equations for the similarity 
solution, (2.12) and (2.22), had no analytic solution and needed to be solved 
numerically. In this Appendix we describe the numerical scheme used in our 
calculations. The scheme is of mathematical interest owing to the care that is needed 
in the treatment of the singularities that arise. 

Equations (2.12) and (2.22) have similar structures. To enhance this similarity and 
set up a convenient framework for subsequent analysis we define 

( 2 n f 3 ) a  
p =  2a+1 ' 

'tnf(t)dt ( x E ( O ,  l ) ) ,  
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where n = 0 for a two-dimensional current and n = 1 for an axisymmetric current. 
Then substituting and integrating once, we obtain 

j :ff’X(t;x)dt+h(s) = 0 ( z ~ ( 0 ,  l ) ) ,  

where X(t;z) is defined by (2.9) in an axisymmetric geometry and is equal to 
(1/4a)ln I(t+z)/(t-x)) in a two-dimensional geometry. In  the derivation of the latter 
expression from (2.20) we used the oddness of the function f f’ to convert the integral 
from the range ( -  1 , l )  to the range ( 0 , l ) .  

I n  either geometry, X(t ; x) has a logarithmic singularity a t  t = x. Since f (  1 )  = 0 
and h(z) varies linearly near x = 1 ,  a consequence of this singularity is that 
ff’ - (1  - t)-i as t + 1. A further (integrable) singularity arises in f(t) a t  t = 0 when 
p =# 0, owing to the continual introduction of fluid a t  the origin. It is the careful 
analysis of these three singularities, a t  t = 0, z and 1, that presents the principal 
challenge in the solution of (C 2). A numerical scheme should not only take care of 
the infinities, but should do so efficiently if an excessive number of points is not to 
be required to obtain an accurate discretization of the problem. 

Integration by parts from t = x reduces the singularity at t = 1 to ( 1  - t ) i  and 
makes the singularity at t = x removable. We let z (x )  = $f2(x) (1  - x 2 ) - i  and, after 
some algebra, obtain 

Y Z Z ( Z ) + [  (z(t)--z(x)) ( l - t z ) t X ’ ( t ; z ) d t  = h(x) ,  (C 3) 
0 

where y = &a (axisymmetric) and y = t (two-dimensional). Considerable simpli- 
fication in (C 3) was gained by use of the identity 

1 

(1 - x 2 ) + X ( l )  + ( (1  -t2)i- (1  -z2);) X’(t)  dt = 
0 

derived from the particular solution of (C 2) in which z (x)  is found to be constant 
when 01 = 0 (2.15) and (2.23)). Our aim now is to represent z(t) in (C 3) by n values 
zi = z(z,), 0 < z1 < z2 < . . . < x, = 1, to find a discrete representation of the integral 
for each xt as a linear combination of { x i } ,  and then to solve the resulting system of 
linear equations for {xi} as a function of {hi = h(z,)}. 

The most elegant way of dealing with the non-polynomic nature of the integrand 
at t = 0 and t = 1 is to write it as the product of a general polynomic function and 
a simple weighting function with the appropriate singularities (see e.g. Acton 1970). 
It is then straightforward to  deduce an integration rule that is an identity when the 
degree of the polynomial is less than a specified number. The extraction of the factor 
(1 - x 2 ) ;  in the definition of z(z), as well as allowing use of the simplifying identity 
(C 4), was also the first application of this ‘product-integral ’ method and ensured that 
x(z) is well-behaved a t  z = 1. The second application takes care of the singularity in 
z ( t )  a t  t = 0. 

Consider the singularity inf(z) a t  z = 0. In  the axisymmetric case supposef(t) - 
t p ,  - 1 < p < 0, as t + 0. Therefore ff’ - t2p-l. Since X(t ; z) = X ( a t ;  az) Va then 
j,’ff’X dt - z 2 P  as z -f 0. But h(x) - 2-p-l so from (C 2) p = -5. Consider now the 
two-dimensional case and suppose that f(0) is finite. Then h(0) > 0 and from (C 2 )  
and the properties of Hilbert transforms we deduce that f - In x, contradicting our 
original assumption that f(0) is finite. However, iff - In x (or is more singular) then 
h(0)  > 0 and so f(0) is finite ! We conclude that fz must be singular a t  the origin but 
less so than lnx. 
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Following the indications above we define a weight function w(t) by 

w(t) = tf (axisymmetric), (C Fia) 

w(t)  = In t (two-dimensional), ((1 5 b )  

and approximate z ( t )  by aw( t )+b ,  where a and b are constants on each interval 
( x i ,  x i+1)  and are chosen so that  the approximant agrees with the two nearest members 
of {z,]. (The more obvious alternative, (at+ 6 )  w(t) ,  does not allow for the fact that  
f becomes well-behaved as a+O.) Let 

,. I 

where 1, = (xk,zk+,) for k 2 and I, = ( 0 , ~ ~ ) .  
This defines a. discrete approximation to (C 3) by 

n-1 n--1 

hi = ( e i k  + f i k ) )  'i + (%k ' k + I  + f i k  z k )  (C 7) 
k=l k=l 

which may be inverted to give { z i }  in terms of {hi} and the numerical coefficients eik 
and f i k .  

The integrals e i k ( i  = k+ 1) and f i k ( i  = k) are singular but enter (C 7 )  with 
ident,ically zero weight and may be ignored. In the remaining integrals the bad 
behaviour in (1 -tz)i may be eliminated by the substitution t = sin8, and the 
singularities in eik (i = k )  and f i k  (i = k+ 1 )  are removable. The singularity of w(t) at 
t = 0 is avoided by making the substitution t = u3 (axisymmetric) or by integration 
by parts (two-dimensional) when k = 1. These final manipulations represent eik and 
f i k  as integrals of polynomic functions and simple application of Simpson's rule will 
evaluate them to high accuracy. 

The calculation of h(x) from {zi} using (C l c )  proceeds in a similar fashion. We 
define 

g ( x )  = xn(2Z( 1 + x)")" (c: 8) 

and approximate g ( t )  in a manner analogous to z ( t ) .  This generates an approximation 
to (C l c )  of the form 

h, = 1,  I 

with numerical coefficients pi  and pi. 
We may now use this formalism to define an iterative numerical scheme to solve 

(2.12) and (2 .22)  for a range of values of a. The computation of the numerical 
coefficients eik and f i k  and the inversion of (C 7) is the most expensive part of the 
calculation. Since these are independent of a and f ( x )  they may be moved out of the 
iterative loop to provide the following efficient scheme : 

calculate e ik ,  f ik ,pi ,pi ;  
calculate the inverse matrix for (C 7 )  ; 
deJine { g i }  frowz a = 0 solution; 
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for a = 0 to a,, step Aa do 
begin repeat caZcuZate {hi} from {gi}  using (C 9) ; 

calculate { z ~ }  from {hi} using inverse matrix; 
calculate {gi} from { z i }  using (C 8) ; 

until convergence to desired accuracy attained ; 
end. 

This scheme converged for all values of a tried; the rate of convergence could be 
increased by a suitable amount of under- or over-relaxation when updating {gi} .  The 
results are shown in figures 2 and 3. 

We conclude with formulae for the axisymmetric kernel X ( t  ; z) derived from 
results given by Lee & Leal (1982). From (2.9) we deduce 

4n z+t  
(C 10a) 

(C l o b )  

where K and E are the complete elliptic functions of the first and second kinds with 
argument m = 4tx/(z+t)*.  
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